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This paper presents a robust phase space reconstruction method based on singular value
decomposition technique and its applications to large rotating machine and gear system
condition monitoring and fault diagnosis. The singular value decomposition is used to
determine the effective embedding space and to reduce the noise level of a measured
vibration signal. Following the singular value decomposition, a pseudo-phase portrait can
be obtained in the effective embedding space. This pseudo-phase portrait is then used to
extract qualitative features of machine faults. Experience has shown that when one
compares the pseudo-phase portraits obtained under different machine conditions, it is
often possible to detect major differences due to different dynamic and kinematic
mechanisms. In the case of gear system condition monitoring, correlation dimension has
been introduced to evaluate these differences in order to obtain more accurate and reliable
diagnosis. The pseudo-phase portrait is conceptually simple and has been found to be
sensitive to some fault types. It is promising therefore that such pseudo-phase portraits can
be used to realize real-time, online computer-aided diagnosis of machine faults.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

It is well known that failure of a mechanical system is always accompanied with the
changes of its dynamic characteristics, usually from a linear or weak non-linear behavior
to a strongly non-linear vibration response. In a rotating machine in which faults exist, one
generally observes complicated non-linear vibration characteristics. Chaotic motions can
be found in a large rotating machine with an unstable oil film, a cracked rotor, a rotor-to-
stator rub or a loose pedestal [1–5]. Various non-linear dynamics including chaotic
vibrations can be found in gear systems [6]. Therefore, for effective fault diagnosis, it is
necessary to develop non-linear diagnostic methods in addition to those methods currently
in use, such as orbit portrait, FFT spectrum, cepstrum and time–frequency or time-scale
analysis, etc.

In recent years, the advancement of the theoretical development of non-linear dynamics
has brought about new methodologies which can be employed to identify and forecast
complex non-linear vibration behavior. Diagnostic modules based on both qualitative
(e.g., the Poincar!ee map, the bifurcation diagram and the pseudo-phase portrait, etc.) and
quantitative (e.g., the Lyapunov exponents, the correlation dimension and the
Kolmogorov entropy, etc.) chaos indicators have made it possible for the early detection
of the presence of chaotic operating conditions. Adams and Abu-Mahfouz [7] examined
rotor rub impact and reported their comparison studies between the results obtained with
conventional FFT and orbit techniques and those with the Poincar!ee map. These studies
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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have shown that one can detect changes in both the pattern of the Poincar!ee map and the
fractal dimension while neither the FFT nor the vibration orbit can show these changes
clearly. The application of the pseudo-phase portrait to large rotating machine fault
diagnosis has been reported in our previous paper [8], where results have demonstrated
that the pseudo-phase portrait seems to be simple for computer implementation and is
sensitive to some fault types in large rotating machines. The correlation dimension has
also been widely used as a powerful tool for interpreting irregular signals for engineering
applications. Researchers have explored the potential applications of correlation
dimension in machine condition monitoring and fault diagnosis [9–12].

Non-linear dynamic systems have been found to be most easily understood when viewed
from a phase space perspective. If all variables are measurable, the phase portrait and the
dynamic invariants can be obtained directly from the actual phase space formed by these
variables. However, for a general multi-dimensional dynamic system, most measurement
facilities or condition monitoring modules will only be able to obtain few of the variables
which contribute to the dynamics of the system and the actual phase space of the system
can rarely be obtained in practice. Moreover, for a real vibration signal, one can neither
derive nor build the phase portrait analytically due to the unavailability of the differential
equations of the system. In order to overcome these problems, Takens introduced the
embedding theorem [13]. Some of the important results are as follows: (1) it is possible to
build an attractor simply by replacing the derivatives with delayed repetitions of only one
measured variable of the system; (2) in order to evaluate the main characteristics of a
process it is sufficient to build one attractor using only one of the variables measured as
mentioned because each of these variables is strictly connected and contributes to each
other.

Some important issues regarding the practical application of the embedding theorem
should be considered carefully. Several remarks on this are given below.

Firstly, reconstruction parameters, such as lag time and embedding dimension, must be
determined before reconstructing the state space. Takens’ theorem assumes the availability
of an infinite amount of measured noise-free data and imposes no restrictions on the
selection of lag time t, while for the embedding dimension m, it establishes the sufficient
condition as m52D þ 1; where D is the fractal dimension. However, since real measured
data sets are finite and contaminated by noise, the embedding dimension and lag time
must be correctly chosen so that the original system and its reconstructed counterpart are
qualitatively equivalent. Only when this is ensured, further calculation carried out in this
pseudo-phase space would give reliable results.

Secondly, experimentally derived signals are always affected by measurement noise. The
pseudo-phase portrait and the dynamic invariants have been found to be sensitive to the
presence of noise. For non-linear dynamics analysis, noise reduction techniques should be
employed to eliminate noise components in a vibration signal while its chaotic components
should be kept unmodified.

Finally, the phase space reconstructed from a vibration signal is multi-dimensional. The
pseudo-phase portrait is in fact a projection of the multi-dimensional attractor in the
pseudo-phase space. Major features of the attractor, including the number of fixed points,
stability properties, and the disposition of the flow should be preserved to the fullest extent
in the projected and normally two-dimensional pseudo-phase portrait. To achieve these
requirements, the plane of projection of the attractor must be selected carefully.

This paper presents a robust phase space reconstruction method based on singular value
decomposition technique and its applications to large rotating machine and gear system
condition monitoring and fault diagnosis. The structure of this paper is as follows: in
section 2, the basic non-linear dynamics analysis procedure is introduced. Section 3
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researches the application of phase space reconstruction to real data measured from large
rotating machines and gear systems. Extensive analysis results are given to verify the
proposed method. Finally, conclusions are made in section 4.

2. PHASE SPACE RECONSTRUCTION

The main idea of the embedding theorem is that it is unnecessary to know the
derivatives to form a co-ordinate system in which one can capture the structure of orbits.
One can instead use directly the lagged variables to construct the state space.

For an N-point time series, x1; x2; . . . ; xNf g; a sequence of vectors yi in a new space can
be generated as

yi ¼ fxi; xiþt; . . . ; xiþðm�1Þtg; where i ¼ 1; 2; . . . ; Nm; ð1Þ

where Nm ¼ N � ðm � 1Þt is the length of the reconstructed vectors yi; m is the embedding
dimension of the reconstructed state space, t is called the lag time measured in units of
sampling interval. The m co-ordinates of each point yi are samples from the raw time series
(separated by a fixed t) covering an embedding window of length tw ¼ ðm � 1Þt: The space
which is reconstructed from a raw time series will be called the embedding space or
pseudo-phase space and its dimension the embedding dimension. The trajectory in the
pseudo-phase space is called the pseudo-phase portrait.

The reconstruction process consists of the determinations of the optimal lag time and
the embedding dimension. In the literature of non-linear dynamics, several methods have
been developed to determine these key parameters. The use of different time lags for each
test can lead to large errors due to inaccurate and inappropriate choice of the lag time. On
the other hand, the use of a constant lag time is also incorrect since each test has its own
specific lag time. The lag time can be determined by autocorrelation function [14], mutual
information [15], fill factor [16], wavering product [17], and high order correlation [18], etc.
The attractor has been found to have more regular appearance when embedded in a space
with adequate dimension than that with insufficient dimension. The approach taken in
published work has been to increase m systematically, until trajectories no longer appear
to intersect [19]. This is, at best, a rather subjective criterion, and the method is rapidly
becoming inapplicable as the dimensions become higher or the noise is present. Another
method, which seems to offer a better solution to this problem, is based on the algorithm
of expansion of the process to the well-adapted basis, which was created by Neymark for
optimal coding of biomedical information [20]. The potential applications of this
algorithm to dynamical system phase space transformation and determination of
embedding dimension were studied in reference [21].

In this paper, we introduce a more versatile singular value decomposition technique for
the determination of the embedding dimension. The idea behind this approach is, given the
hyperspace of dimension L, to find the smallest subspace that approximately bounds the
attractor. This subspace is spanned by the eigenvectors corresponding to the largest
eigenvalues of the covariance matrix of a time series, i.e., the directions where the attractor
has the largest variance [22].

For a given time series, the singular spectrum may depend only on the choice of the
embedding window length, not separately on the embedding dimension m; or the lag time
t [8, 22–24]. Therefore, the embedding window length tw; as an independent parameter
instead of focusing on the parameters t and m should be firstly determined. Kugiumtzis
[23] suggested to set tw > tp; where tp is the mean orbital period which is equal to the mean
time between peaks (tbp) of the raw time series. Here, we introduce another method to
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determine tw: tw is defined as the average time that is needed to complete a full cycle after
the first passage through the average of the signal [25].

For a given tw; one may select a sufficiently large L; and then construct trajectory
matrix, A as

A ¼ N
�1=2
L ½yT

1 ; yT
2 ; . . . ; yT

NL
	T; ð2Þ

where N
�1=2
L is a normalization coefficient. Then the covariance matrix B can be expressed
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where B is a real, symmetric L � L matrix, and hence its eigenvectors form a complete
orthonormal basis in RL: Assume that the eigenvalues of the covariance matrix B are
ordered in a descending order as l15l25 
 
 
5lL: Then the normalized singular spectrum
sj � Lðsj ¼ jljj=

PL
j¼1 jlj j are plotted.

In order to demonstrate the relationship between the normalized singular value and the
choice of the embedding window length, the normalized singular spectrum of the Lorenz
model is computed for different lag times but for the same window length. The Lorenz
model is defined by the following equations [26]:

’xx ¼ aðy � xÞ; ’yy ¼ px � y � xz; ’zz ¼ xy � bz; ð4Þ
where a ¼ 10; p ¼ 28; b ¼ 8=3: In this instance, the system produces turbulent dynamics.
The differential equations are solved numerically using a fourth order Runge–Kutta
integration with a desired accuracy of 10�6:

Figure 1(a) shows the normalized singular spectrum of the x variable of the Lorenz
model versus the index for different values of t in the case when m ¼ 6: From Figure 1(a),
one can see that the normalized singular spectra depend on t significantly. Figure 1(b)
shows the normalized singular spectra versus the index for a number of embedding
Figure 1. The normalized singular spectrum of data generated by the Lorenz equations: (a) The normalized
singular spectrum plotted as a function of t while for m ¼ 6; curves 1, 2, 3 and 4 correspond to t ¼ 1; 4; 8 and 12.
(b) The values of embedding dimension and lag time are (m, t)=(11,12), (13,10), (16,8), (21,6).



Figure 2. The estimation of correlation dimension for data generated by the Lorenz model. The values of
embedding dimension and lag time are (m, t)=(11,12), (13,10), (16,8), (21,6).

APPLICATION OF PSEUDO-PHASE PORTRAIT 5
window lengths that are equal. The values of the embedding dimension and the lag ðm; tÞ
used in the simulation were (11,12), (13,10), (16,8), and (21,6). They are seen to fall
essentially on a singular curve. Figure 1(b) demonstrates the dependence of normalized
singular spectrum on window length rather than separately on the embedding dimension
and the lag time.

The embedding window length is of particular importance since it determines the
amount of information passed from the time series to the embedding vectors. In order to
study the effects of the embedding window length on the quality of the reconstruction, the
correlation dimension of the x variable of the Lorenz model, which is used to assess the
quality of the reconstruction, is computed for different lag times but for the same window
length. Figure 2 shows the relative effects on the correlation dimension by varying both the
lag time and the embedding dimension while keeping the window length constant. From
Figure 2, one can see that all these cases follow a universal law.

The most valuable property of the normalized singular spectrum is that the embedding
dimension can be determined in the absence of any prior knowledge about the dynamic
system. Furthermore, the singular spectrum has the ability to discriminate the genuine
signal components and those of the contaminated noise in the time series. In the absence of
prior knowledge about the embedding dimension and the contamination, it is plausible to
assume that the system state space is rather high dimensionally and that the noise will fill
in low-dimensional state space more or less uniformly. The rank of the covariance matrix,
which is equal to the number of its non-zero eigenvalues, is the dimension of the smallest
subspace of the embedding space that contains the reconstructed trajectory. Let the
observations be composed of signal xðnÞ and noise cðnÞ: yðnÞ ¼ xðnÞ þ cðnÞ; where noise
cðnÞ prevents any eigenvalue of the covariance matrix from vanishing. The first major
singular values, which are significantly large and represent the main components of the
total signal energy, are selected to construct the ‘‘clean’’ signal. The corresponding
subspace is regarded as the effective embedding space and its dimension the embedding
dimension. The remaining singular values, which should otherwise be zero, are completely
due to the presence of noise. In this case, it is possible to find a ‘‘noise floor’’ that arises
from noise by investigating the singular values of the covariance matrix. Therefore, by
imposing that those extra singular values due to noise be zero, a great amount of noise can
be eliminated.

Once the embedding dimension is determined, the lag time can then be calculated
according to the known relationship among the embedding window length, the lag time
and the embedding dimension. According to the new embedding dimension and lag time,
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the new covariance matrix will again be constructed. Then one can consider the two
eigenvectors fC1g and fC2g which are associated with the maximum eigenvalues of the
new covariance matrix as the two principal axes, and project the reconstructed attractor
onto this plane spanned by fC1g and fC2g: One can conclude that the reconstructed
pseudo-phase portrait based on these procedures will possess all the major features of the
dynamic characteristics of the system under consideration. Firstly, one may think of the
trajectory as exploring on average, an m-dimensional ellipsoid. The fCig then determine
the directions and li the lengths of the principal axes of the ellipsoid. Secondly, in the
directions associated with larger eigenvalues, the effect of noise will be reduced, and in the
directions associated with smaller or vanishing eigenvalues, the contribution of noise will
dominate.

3. APPLICATIONS TO REAL VIBRATION SIGNALS

While numerically simulated signals may be useful for the preliminary research,
experimental or industrial data are usually required for the evaluation and validation of a
diagnostic system. In this section, the application of the proposed pseudo-phase portrait to
gear damage detection and large rotating machine fault diagnosis will be evaluated from
the point of view of the practitioners.

3.1. LARGEROTATINGMACHINEWITH FAULTS

In practice, a large rotating machine may experience various faults such as
misalignment, imbalance, rotor-to-stator rub, surge, crack, oil whirl, oil whip, loose
pedestal, and aerodynamic excitation, etc. Current condition monitoring systems for large
rotating machine rely heavily upon signal processing techniques which were developed to
deal with linear systems and were dominated by FFT-based analysis. Unfortunately, the
application of linear spectral methods to data measured from non-linear systems can result
in featureless spectrum which obscure the potential simplicity of the underlying non-linear
mechanism. For example, a peak frequency of 0:4f � 0:5f (where f is the fundamental
frequency) may correspond to either oil whirl or aerodynamic excitation or some other
fault.

Figure 3 shows the FFT spectra of the vibration signals in a large rotating machine with
an oil whirl fault and aerodynamic excitation fault. The spectra of these two conditions are
so similar that one may fail to make a correct diagnostic decision based on spectral
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Figure 3. FFT spectra of the vibration signals of a large rotating machine with (a) oil whirl fault and
(b) aerodynamic excitation fault.



Figure 4. Pseudo-phase portraits reconstructed from the vibration signals of a large rotating machine with
(a) oil whirl and (b) aerodynamic excitation. The (C1, C2) plane is spanned by two eigenvectors associated with
the two largest eigenvalues of the covariance matrix.
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analysis alone in this situation. However, the pseudo-phase portrait of the vibration
signals in a large rotating machine with aerodynamic excitation fault is different from that
of oil whirl fault. This can be seen clearly in Figure 4. Figure 4(a) shows the pseudo-phase
portrait reconstructed from vibration signal of a large rotating machine with an unstable
oil film. From Figure 4(a), one can see that the whirl phenomenon has been detected by
pseudo-phase portrait. Figure 4(b) shows the pseudo-phase portrait of a large rotating
machine with aerodynamic excitation fault. The location of the center of the pseudo-phase
portrait is complicated and it changes along the 45o direction.

The great influence of the lag time on the pseudo-phase portrait can be seen from
Figure 5, which shows that the pseudo-phase portraits with different lag times. It can be
seen that the change of lag time affects significantly the shape of the pseudo-phase portrait
and it loses its coherent structure when the lag time increases above a characteristic value
(optimal lag time). If t is too small, the reconstructed attractor falls on the main diagonal
of the co-ordinate system. This results in little information gain, i.e., redundance. If t is
too large, successive delay co-ordinates may become causally unrelated, leading to another
extremity where the reconstruction is no longer representative of the true dynamics, and
this is called irrelevance.

Figure 6(a) shows the pseudo-phase portrait reconstructed from the vibration signal of a
large rotating machine with a slight rotor-to-stator rub fault. From Figure 6(a), one can
see that there exist discontinuous points or sharp corners in the pseudo-phase portrait
when a rotor-to-stator rub fault happens in a large rotating machine. Therefore, even if a
slight rub fault happens in a large rotating machine, the pseudo-phase portrait can be used
to diagnose it effectively. A very interesting phenomenon can be seen from Figure 6(b),
which demonstrates the pseudo-phase portrait of the vibration signal of a large rotating
machine with a serious rotor-to-stator rub fault. In comparison with Figure 6(a), there
exist more sharp corners and direction changes. In essence, with the help of the pseudo-
phase portraits shown in Figure 6, one can easily detect how a rotor-to-stator rub occurs
and develops.

Figure 7(a) and 7(b) shows the pseudo-phase portraits reconstructed from the vibration
signals of a large rotating machine with oil whip fault and loose pedestal fault respectively.
From Figure 7(a), one can see that the changes of the position of the center of the pseudo-
phase portrait are very complicated. This implies that the rotor system is severely unstable.
When the loose pedestal condition and rotor-to-stator rub happen in a large rotating
machine, they produce the same physical phenomena: impacting and periodic changes of



Figure 5. Pseudo-phase portraits reconstructed from the vibration signals of a large rotating machine with
different lag times.
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stiffness. It is hence rather difficult to classify these two faults using traditional diagnosis
methods such as FFT spectra analysis. Fortunately however, the pseudo-phase portrait of
the loose pedestal fault (as shown in Figure 7(b)) in a large rotating machine is different
from that of rotor-to-stator rub (Figure 6). The friction due to rotor-to-stator rubbing
plays an additionally important role which can be reflected by the discontinuous points or
sharp corners in the pseudo-phase portrait as shown in Figure 6.



Figure 6. Pseudo-phase portraits reconstructed from the vibration signals of a large rotating machine with
(a) slight rotor-to-stator rub fault and (b) serious rotor-to-stator rub fault.

Figure 7. Pseudo-phase portraits reconstructed from the vibration signals of a large rotating machine with
(a) oil whip fault and (b) loose pedestal fault.
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From the above analysis, one can see that the pseudo-phase portraits are sensitive to
some fault types in a large rotating machine. The change of the shape and position of the
pseudo-phase portrait are important indications which can be employed to diagnose
effectively fault sources and types. In general, when one compares the pseudo-phase
portraits related to different conditions of a large rotating machine, it is often possible to
find some differences due to different dynamic and kinematic mechanisms. Therefore, it is
promising that the proposed pseudo-phase portrait method can be used to realize the real-
time, online computer-aided diagnosis of large rotating machines.

3.2. GEAR SYSTEM FAULT DETECTION

A gear transmission system converts a rotary input motion into another rotary output
motion at a different frequency. In an ideal mechanism, the relationship between input
and output depends only on the geometry or kinematics of the meshing gears. However,
for real industrial gear systems, many non-linear effects prevent them from being ideal,
such as gaps and friction, leading to a very complex dynamic behavior of the meshing
mechanism. Classical Fourier-transform-based analysis is generally difficult to use to
detect gear system failures at an early stage. For this reason, researchers have proposed



Figure 8. Gear system vibration signals of different operating conditions: (a) normal and (b) with early fatigue
cracked tooth.
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many other vibration analysis techniques for the early detection of gear systems fault
symptoms, including the cepstra approach [27], the amplitude and phase demodulation
approach [28], the cyclostationary process theory [29], and the time–frequency analysis
[30, 31]. However, understanding of non-linear dynamics in gear systems has been very
limited and largely neglected. Modern developments in non-linear dynamics have
provided new tools to deal with this hitherto unsolved problem.

Figure 8 shows the vibration signals in a gear system under different operating
conditions: normal and early fatigue crack. The experimental vibration signals were
obtained from a system comprising an input gear with 23 teeth driven by an electric motor,
and meshing with a driven gear of 22 teeth. The rotational frequency of the electric motor
was 24Hz which resulted in a meshing frequency of 552Hz. The vibration signals were
measured in the horizontal direction at the bearing housing and the sampling frequency
was chosen as 2
5 kHz.

Figure 9 shows the pseudo-phase portraits resconstructed from the vibration signals
shown in Figure 8. It can be seen from Figure 9 that the pseudo-phase portrait of the gear
system under normal condition is more broad and regular than that obtained under
cracked tooth condition.

Another experimental set-up contains a two-stage reduction gearbox. In the gear fatigue
testing experiment, two pairs of gear (26-43, 36-24) came into meshing with the input
rotating speed at 1270 r.p.m. During the gear fatigue testing process, the gearbox
operating condition experienced three different stages: normal, with a cracked tooth and
with a broken tooth. The gearbox translational vibration signals were measured externally
on the gearbox-bearing case using an acceleration sensor and amplified by a charge
amplifier to monitor the operating condition of the gearbox. The sampling frequency was
chosen as 2
5 kHz.



Figure 9. Pseudo-phase portraits of gear system vibration signals corresponding to different running
conditions: (a) normal and (b) with early fatigue cracked tooth.
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Raw vibration signals measured from the outside of the gearbox under different
operating conditions are displayed as shown in Figure 10. Obviously, there are distinct
differences between the vibration signals of the gearbox with a broken tooth and those of
the other two operating conditions, but there is only a slight difference between the
vibration signals measured under normal condition and the condition with a cracked
tooth. As is well known, it is also very difficult to detect the existence of an early fatigue
crack against normal operating condition by just using FFT and other frequency domain
analysis. The pseudo-phase portraits of the vibration signals are illustrated in Figure 11.
As shown in Figure 11, it becomes possible to identify the existence of cracked tooth
against the normal operating condition from the pseudo-phase portraits.

From the above analysis, one can see that the pseudo-phase portrait has great potential
for the reliable diagnosis of defects in industrial gear systems. However, unlike the pseudo-
phase portraits of large rotating machine with faults, the pseudo-phase portraits appear as
a very complicated solid with an undefined shape for the industrial gear systems. Although
one usually compares the pseudo-phase portraits under different conditions of a gear
system, it is also possible to establish some differences due to their different dynamic and
kinematic mechanisms. More accurate characterization of these differences may be needed
for effectively detecting gear systems faults.

The common problem, in these cases, is to use dynamic invariants for these differences
in order to obtain an accurate characterization, such as the application of the Lyapunov
exponent, the correlation dimension and the Kolmogorov entropy, etc. The Lyapunov
exponents evaluate the sensitivity of a system to changes in initial conditions; a positive
Lyapunov exponent physically means that nearby orbits diverge. The existence of positive
Lyapunov exponents also implies chaotic dynamics. As a criterion for chaos, one has only
to examine the largest Lyapunov exponent and check if it is positive. From the Lyapunov
exponents, Lyapunov dimension can be obtained. Kolmogorov entropy, which
characterizes the mean velocity of losing information about the system, is also a good
criterion for chaos: it is equal to zero for regular motion, infinite for noise, positive and
constant for chaotic motion. The measures of dimension evaluate the extent to which
orbits will fill a certain subspace and a non-integer dimension is a hallmark of a strange
attractor. Many definitions of dimension exist. Here the correlation dimension is
introduced. The correlation dimension of a non-linear dynamical system is of value to
engineers because it provides an estimation of the number of degrees of freedom that an
engineering system possesses.



Figure 10. Gearbox vibration signals of different operating conditions: (a) normal, (b) with cracked tooth and
(c) with broken tooth.
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The Grassberger–Procaccia algorithm of the correlation dimension and its modified
formulation, together with the discussions on the influence of data length and noise level
on computational accuracy of correlation dimension have been discussed in our previous
paper [12]. After the reconstruction of state space, the correlation integral Cm rð Þ is then
defined in the m-dimensional reconstructed space as the probability of finding a pair of
vectors whose distance is not larger than r:

CmðrÞ ¼
2

NmðNm � 1Þ
XNm

i�j>w

Hðr � ri;jÞ; ð5Þ

where H(x) is the Heaviside Step function [H(x)=1 for x>0 and H(x)=0 for x40] and r

is the distance parameter, w is a cut-off parameter which is used to avoid dynamic
correlation, ri;j is the distance between two reconstructed vectors. The maximal norm is
used because it can save computation time:

rij ¼ kYi � Yjk ¼ maxfjxiþlt � xjþltj:04l4m � 1g: ð6Þ



Figure 11. Pseudo-phase portraits of gearbox vibration signals corresponding to different running conditions:
(a) normal, (b) with cracked tooth and (c) with broken tooth.
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The correlation dimension D2 is defined as follows:

D2ðmÞ ¼ lim
r!0

ln CmðrÞ
ln r

: ð7Þ

Figure 12 shows the analysis results of correlation dimension of vibration signals in gear
systems measured under different operating conditions as shown in Figure 8. The results
demonstrate that the state spaces of gear system under different operating conditions
constitutes different dimensional attractors due to different kinematic mechanisms. In the
case of normal operating condition, the state-space dimension of the attractor is close to 7,
which is higher than that obtained under cracked tooth operating condition.

Figure 13 shows the correlation dimension results of the gearbox vibration signals
shown in Figure 10. In the case of normal running condition, the correlation dimension is
larger than those of the other two abnormal conditions. During the fatigue crack testing
process, the correlation dimension decreases as the gear fatigue crack develops. When one
of the meshing teeth is finally broken, the dimension reaches a minimum.

4. CONCLUSIONS

In this paper, phase space reconstruction method based on singular value decomposi-
tion technique has been introduced. The singular value decomposition is used to determine
accurately the embedding dimension. The lag time can then be calculated according to the
known relationship among the embedding window length, the lag time and the embedding
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dimension. The singular spectrum has also been found to have the ability to discriminate
signal components from those of the contaminated in measured vibration signals.

Pseudo-phase portrait is used to extract qualitative features of machine faults. In
general, when one compares the pseudo-phase portraits pertaining to different conditions
of a large rotating machine, it is often possible to identify some major differences due to
the different dynamic and kinematic mechanisms involved. Although the pseudo-phase
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portraits appear as a very complicated solid with an undefined shape for the industrial gear
systems, when one carefully compares the pseudo-phase portraits pertaining to different
conditions of a gear system, it is also possible to detect some obvious differences due to
their different dynamic and kinematic mechanisms. In cases of gear systems condition
monitoring, this paper introduces the correlation dimension to quantify these differences
in order to obtain a more accurate characterization. From the analysis results presented in
this paper, one can see that the pseudo-phase portrait is conceptually simple, and is
sensitive to some of the common fault types encountered in engineering. The change of the
shape and the position of the pseudo-phase portrait are important factors which can be
used to effectively diagnose fault sources and types. Therefore, it is quite possible to apply
this proposed pseudo-phase portrait technique to realize the real-time, online computer-
aided diagnosis of machine faults.

From the above analysis, one can conclude that diagnostic modules based on non-linear
dynamics can add useful diagnostic information for rotating machinery in particular and
mechanical systems in general, supplementing the traditional methods. Further work in
this diversion should seek to collect as much as possible the actual industrial data.
Moreover, it will be necessary to establish the correlation between diagnostic parameters
and damage parameters for the final diagnostic system.
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APPENDIXA: NOMENCLATURE

A trajectory matrix
B covariance matrix
CmðrÞ correlation integral
D2 correlation dimension
HðxÞ Heaviside step function
m embedding dimension
N length of the original time series
N

�1=2
L normalization coefficient

Nm length of the reconstructed state-space vector
xi original time series
yi reconstructed state-space vector
sj normalized singular value
t lag time
tw embedding window length
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